
1

Mesh-Based Techniques: A New Approach to Drift-free Natural
Navigation in VR

Mark Anson1 Yangtao Ge1 Xiaofeng Paul Lin1 Dao Liu1 Choi Lam Wong1 James Zhong1

1Department of Computer Science, University College London, London, WC1E 6BT UK

Abstract—Natural navigation in virtual reality (VR) allows users to travel within the virtual environment (VE) by freely by
moving their body and head. However, limited space available to common VR users restricts their ability to explore VEs naturally.
Scientists have proposed multiple natural navigation techniques to mitigate the issue, one of the outstanding examples are scale
adaptive techniques. However, these techniques would introduce a Drift effect. Although correction methods have been proposed
in formal studies, none can fully eliminate the drift effect. This paper proposes a new category of techniques called Mesh-Based
Techniques (MBTs) and provides four instances of drift-free techniques which achieve natural navigation in relevant areas. The
research conducts simulation experiments to justify the viability of MBTs, and our results show that two techniques, Pressure
Ring and Lattice Crush, are potentially very effective while the other two perform present issues which would require further
improvement.

I. INTRODUCTION

V IRTUAL reality (VR) has grown in popularity as a field
of science and has spawned a number of commercial

products that are both inexpensive and accessible to non-
professional users. Recent advancements in VR hardware
technology, such as optical resolution, reductions in movement
latency, and screen refresh rate, have catapulted the industry
into a new era. Since 2016, most consumer-level VR platforms,
such as HTC Vive and Oculus Rift, have been available on
the market [1]. The commercial release of VR devices has
successfully been embraced in people’s everyday lives, with
gaming being one of the primary uses [1]. Sutherland proved
a definitive display of a room where the user can interact with
the object (i.e. a chair or a bullet) in such a display 50 years
ago. [2].

Human-Computer Interaction (HCI) scholars have con-
tributed to improving the usability of VR and user experience
over the last decade by examining user interfaces that enable
users to interact with the scenes, such as manipulations and
physical displacement in Virtual Environments (VEs) [3]. In
VE exploration, locomotion is recognised as one of the most
important facets of interaction to improve the user experience.

We propose a novel navigation approach based on bijective
mapping between coordinates in a pair of triangle meshes,
which can theoretically eliminate technique-induced Drift.
We then devise four distinct techniques to generate meshes:
Pressure Ring, Optimization Approach, Lattice Crush and
Reverse Lattice Crush. All techniques provide various scaling
across the virtual space by moving the vertices of the mesh
and adjusting the structural relationship between the triangular
meshes.

We design the test environment where 6 flags are evenly
placed on the edges of a regular hexagon. The simulation
experiment uses the programmable bot to imitate the real VR
users. The bot is programmed to move through different flags
in order according to the pre-generated test suites.

The paper outlines the potential impacts on user experience

adopting the Drift-free navigation techniques and conducts a
simulation to evaluate the severity of the negative impacts. The
four approaches are compared with the data collected from
the simulations. It was found that, Pressure Ring excels at
simulating natural navigation in predefined areas, while Lattice
Crush provides a better overall performance at the cost of
scaling precision in those areas. We discuss the restrictions
of the experiment and above-mentioned techniques. Then,
we conclude the paper with a discussion on limitations and
potential future works.

II. RELATED WORK

This paper will review two related research fields, specif-
ically, Natural VR Navigation techniques, and the effect of
Drift and correction techniques.

A. Natural Navigation Techniques

Navigation techniques is a vital research field in VR,
which are commonly categorized into wayfinding and travel.
Wayfinding is defined as the mental cognitive process for a
user to find the direction to the target, whereas travel means
the operations conducted by the user to proceed to a target,
such as a flag in virtual environment (VE) [4], [5]. These two
categories hence are commonly used to evaluate a navigation
technique’s performance.

With the growing number of commercial VR applications,
available space in real has become a major constraint for
physical displacement in large VE where the situation requires
the reality interaction space to be larger or equal to the virtual
space in matching with natural one-to-one mapping navigation
[6]. During the decade, several navigation methods have been
proposed by VR researchers to mitigate the limitation. Ac-
cording to Nilsson et al. [7], the approaches and metaphors are
commonly categorized into three divisions: 1) Re-positioning
Systems, the method counteract the forward direction move-
ment so that walking movement can be simulated at the static
position; 2) Proxy gestures, the method using user gestures as

2

the a proxy for actual steps and 3) Redirected walking, the
method manipulating the actual movement and maps it into
virtual movement with slight changes.

Re-positioning methods often require hardware support such
as treadmills [8] and human-sized hamster balls [9]. These
methods essentially reverse the forward displacement and keep
the users static at a certain position which provide a close
simulation to natural locomotion. However, these methods can
potentially require a large budget to use, and it is compli-
cated to fix the size of interaction space for a home-based
user. Also, Bowman et al. demonstrated that re-positioning
techniques introduce unnatural movements which are different
from walking normally on the ground and hence might cause
cybersickness [4].

Walking In Place (WIP) is a commonly referenced proxy
gesture technique, which instead of using real physical dis-
placement uses proxy gestures such as swinging arms [10]
and stepping feet [11] to represent walking in the virtual
environment. Although WIP provides users with a natural
and less fatiguing experience when navigating [10], it cannot
provide the sense of presence as natural walking, specifically,
users cannot perceive where they are when they start or stop
moving [12].

Redirected walking (RDW) is a technique to use visual
dominance of the user in VE to map physical displacements
was first proposed by Razzaque et al. [13]. Generally, RDW
manipulates the locomotion path in real to optimize the space
by scaling translation, rotation angle, curvature gain and
bending gain [7]. However, conventional redirected walking
methods only alleviate the space limitation down to 12x12m
[14] and 9x9m [15] for square size, which is still restrict
the application scenarios, for example, non-professional users
and home-based users. To mitigate the issue further, methods
called scaled adaptive techniques (SATs) are proposed by
adopting the translation gain in RDW and controlling the
viewpoint scale and velocity [16] [5]. These methods allow
users to move naturally (at 1:1 scaling) at highly relevant
areas or “points of interest” and at increased scaling factors
in less relevant areas. There are several variants of SATs such
as optical flow, head motion and target destination [6].

Based on the previous experiments, SATs usually generate
a strong performance in terms of available space, for instance,
3x3m [5] and 5x5 [17]. However, the scale adaptive techniques
inherited from dynamic control of viewpoint often produce a
side effect called Drift as the paper will discuss in the next
subsection.

B. Drift Effect and Correction Techniques
Drift effect can be categorized into two main divisions

in terms of its sources, specifically, hardware-produced and
techniques introduced [6]. Hardware-based drift is usually
related to internal sensors such as gyroscope and motion
stereos, the sensor are not accurate enough to capture users’
insignificant physical displacement, and accumulation of these
implicit drift error contributes to significant deviations for
mapping the real interactive environment [18].

The other class of drift effect is often introduced by dis-
placement manipulating navigation techniques such as redi-

rected walking and scaled adaptive techniques, which dynam-
ically modify the user’s velocity (i.e. angle and speed) from
various scaling factor. The NaviFields technique proposed
by Montano et al. [5] introduces the drift effect at both
experimental level and theoretical level to show the impact
and cause of the drift.

A more detailed drift effect analysis is conducted by Mon-
tano et al [6]. where it provides a model of uncorrected SATs
to demonstrate the mathematics behind the drift effect. Then
it proposes a drift correction metaphor based on the the model
and two experiments, simulation and user-study respectively,
are executed to show the effectiveness of the drift-correction
technique. However, it does not fully eliminate the drift effect
and it will be exaggerated when adopted to smaller size VEs.
Hence, it is worth investigating and proposing a category of
drift-free navigation techniques, which is the aim for this
paper.

III. RESEARCH HYPOTHESIS

A. Navigation Techniques

A potential approach to eliminate drift is to establish a
bijective mapping between real and virtual 2D coordinates.
With bijective mapping, any real coordinate is mapped to
an equivalent virtual coordinate, therefore, the drift defined
by Montano et al. [6] is eliminated. Homogeneous scaling is
implicitly a bijective map, however it has a constant scaling
factor. In order to enable variable scaling factors with bijective
mapping, we propose a SAT based on bijective mapping be-
tween a pair of triangle meshes using barycentric coordinates.
This novel method employs a real mesh covering the available
tracking space and a virtual mesh covering the reachable
virtual space.

A triangle mesh can be represented by a set of vertices
V ⊂ R2 and a list of tuples where each tuple is t = (i, j, k) ∈
T representing a triangle consisting of vertices vi, vj and
vk. Given a virtual mesh Mv = (Vv, Tv), the real mesh is
Mr = (Vr, Tr) where Tr is identical to Tv . Vr is a result of
transforming Vv , vi ∈ Vv which corresponds to v′i ∈ Vr and
v′i = Transform(vi) for some transformation function.

To map the real position to virtual coordinates, the barycen-
tric coordinates (α, β, γ) representing the real position with
respect to the triangle with vertices v′i, v

′
j and v′k contain-

ing it is first found, then the virtual position is given by
αvi + βvj + γvk. This method offers a way to establish
bijective mapping between a triangle mesh pair. As for the
transformation, one of the two goals is to enable navigation
in a larger virtual space from limited real space, therefore,
the transformation is a process of compressing the virtual
mesh in order to reduce its size. For the case of homogeneous
scaling of scaling factor k, the transformation of each vertex is
simply a linear transformation Transform(v) = 1

k Iv, where
I ∈ R2×2 is the identity matrix. However, in our case, a more
delicate transformation is required so that the triangles within
certain areas remain unchanged (in terms of orientation, area
and shape) while others are compressed to make space.

There three potential issues of applying the above mapping
method on navigation. Firstly, the spatial relationship is not

3

maintained by non-linear transformation which can potentially
produce an angle error between the displacements in real space
and in virtual space. Secondly, there is a discrete change of
scaling and aforementioned angle error when entering another
triangle. Lastly, the scaling experienced in different directions
could be different given the same position. The first issue could
have a direct detrimental effect on user experience because the
direction of movement in virtual space is not identical to that
in real space. If the angle error is kept below some threshold
[19], then the impact on user experience can be minimized.
As for the discrete change between two triangles, continuous
change can be simulated if enough triangles are used and the
triangles are small enough. The impact of the third issue is to
be evaluated by experiment.

B. Mesh-Based Techniques
Based on the approach discussed above, this paper proposes

a category of methods called Mesh-Based Techniques (MBTs)
for VR navigation. MBTs are defined as a process of com-
pressing the size of virtual space to smaller real space, and
triangulating both spaces into meshes consist of multiple small
triangles, where each triangle follows the barycentric rules.
Hence it maintains the one-to-one mapping between virtual
and real spaces. In the following subsections, the paper will
introduce four instances of MBT, which are Lattice Crush,
Pressure Ring, Optimization Approach and Reverse Lattice
Crush.

1) Lattice Crush
One such method that utilises this mesh manipulation tech-

nique is Lattice Crush. Lattice Crush focuses on heuristically
modelling the crushing of a lattice comprised of linear springs
of varying spring constants. By continually calculating resul-
tant forces on nodes, and “nudging” them in the direction
of the force vector, we can generate meshes that expand
around areas of “higher relevance”. This not only avoids the
drift problem but can be infinitely customised and fine-tuned
depending on the specific environment it is being used for.

Creating the crushed mesh consists of a continuous iterative
process, first calculating resultant vector forces of each node
in the mesh, then moving the node a small amount in the
direction of the resultant vector. This acts to approximate the
physics of mesh crushing without creating huge overhead. To
implement this technique, the mesh could be represented in
many different ways. During research we utilised a Python
NetworkX [20] object with each edge containing a ”weight”
attribute for the spring constant. Initially, the mesh is shrunk
linearly to the desired size, before force calculation and
nudging are continually applied.

Force calculations are achieved through a series of iterative
processes. Firstly a set of all force vectors from each connected
edge at each node is created, calculated from the linear spring
equation, F = kx. Next the resultant vector from each of
those sets of vectors can be calculated using the head-to-tail
[21] method, and then the node can be nudged slightly in
that direction by finding a new set of coordinates some small
distance from the node origin [22].

The quantity by which the node is moved on each iteration
is arbitrary, in testing it was set to 0.001 multiplied by the

force of the resultant vector for 100 iterations, further fine
tuning was then achieved by changing the maximum weight
of the edges.

In order to find the weights of each edge, Lattice Crush
uses a ”relevance map”, which is also used by Reverse Lattice
Crush. For each edge, the coordinates of the midpoint are
mapped onto the relevance map to determine the relevancy.
During development an image was used to represent this, with
opacity as the factor used, although there are many other ways
to implement such a solution.

weight =
256− opacity

255
× weightmax (1)

weightmax represents the weight applied to an edge in an
area of maximum relevance. This value must be fine tuned to
produce the desired level of compression.

2) Reverse Lattice Crush
Similar to Lattice Crush, this method nudges vertices around

areas of high relevance, but in contrast this method’s virtual
mesh starts from a mesh with varying levels of density rather
than an uniform lattice. The virtual mesh is then optimized
into a uniform mesh and scaled down to the dimensions of the
real environment. This technique builds upon readily available
mesh generators and optimizers, and avoids lengthy manual
mesh manipulation as opposed to Lattice Crush.

Generating a virtual mesh of varying levels of triangle
density requires a complimentary relevance map similar to the
relevance maps seen in NaviFields [5]. Similarly to Lattice
Crush, the relevance map is a grayscale image that represents
the virtual environment. White pixels in the relevance map
correspond to areas of low interest, darker pixels correspond
to areas of increasingly high relevance, and black pixels
correspond to areas that should be mapped 1:1 to the physical
environment.

The virtual mesh generation step reads in the relevance map
and varies the length of edges depending on the gray-scale
value at the mapped position of the edge in the relevance
map. The virtual environment is first split into a large number
of small areas. For each area, their average coordinate is
computed and a matching pixel brightness is read from the
relevance map file by mapping the virtual environment’s
coordinates to the relevance map. From that pixel brightness,
an edge length for that area is computed.

Assume an 8-bit grayscale image:

Ledge = (1 +
pbrightness

255
)× Lbase (2)

Where Ledge is the computed VE edge length, Lbase a
base parameter defining the uniform mesh edge length, and
pbrightness the brightness of the pixel located at the coordi-
nates mapped from an edge’s coordinates from the VE. The
shorter edges occur at the dark areas of the relevance map and
result in smaller triangles.

The optimization step then moves vertices around such
that all triangles in the mesh reach an uniform size; smaller
triangles get stretched while larger triangles shrink. When opti-
mization reaches a certain threshold on triangle area deviation,
the whole optimized mesh is uniformly scaled down into the
real environment mesh.

4

3) Pressure Ring
Inspired by NaviFields [5], the Pressure Ring utilizes pairs

of regular polygons (rings) to manipulate the mesh. A formal
description of a pressure ring is given by a tuple (c,Rin, Rout)
where c ∈ R2 is the center, Rin is the circumradius of the inner
ring and Rout is the circumradius of the outer ring. Assuming
scaling factor k is desired outside of the natural navigation
areas. The transformation function Transform is such that:
v′ = Transform(v) =
1
k Iv, if ||v − c|| ≥ Rout

1
k Ic+ (v − c), if ||v − c|| ≤ Rin

[(||v − c|| −Rin)Rout/k−Rin

Rout−Rin
+Rin] + 1

k Ic otherwise
(3)

Pressure Ring applies linear transformation to vertices out-
side of the outer ring, however for the area within the inner
ring remains unchanged. One beneficial property of Pressure
Ring is that, the navigation outside or inside of both rings are
theoretically equivalent to homogeneous scaling, the former is
of scaling factor k and the latter is of scaling factor 1 (i.e.
natural navigation). The issue of angle error does not occur
within these two areas.

4) Optimization Approach
The optimization approach of compressing meshes defines

a cost function based on the angles and areas of the triangle
constituting the mesh and uses simulated annealing to mini-
mize the cost. The cost function consists of two types of costs.
The first type, area cost, penalizes transformed triangles having
different areas other than the objective areas. The second type,
angle cost, penalizes angle differences between interior angles
of the original triangle and the transformed one.

Fig. 1: Illustration for area cost and angle cost

AreaCost(t) = AreaWeightt(
−−−→
V ′i V

′
j ×
−−−→
V ′i V

′
k −ObjAreat)2

(4)

AngleCost(t) = AngleWeightt[(a
′−a)2+(b′−b)2+(c′−c)2]

(5)

Cost(Mv,Mr) =
∑
t∈T

AreaCost(t)+
∑
t∈T

AngleCost(t) (6)

Mr = Transform(Mv) = argminMCost(Mv,M) (7)

AreaCost is utilized with the aim of providing different
scaling factor across the virtual space. Assuming the scal-
ing factor k is desired in the region covered by triangle
t, ObjAreat can be set to k−2Aijk to optimize towards
such goal. AngleCost is used to reduce maximum angle
error across the entire virtual space by spreading the error.
Finally, AreaWeight and AngleWeight specify how much
to penalize for angle error or mismatched scaling factor in any
given triangle.

IV. EXPERIMENT DESIGN

A. Methodology

1) Test Meshes
Mesh generation with Pressure Ring was based on a spe-

cialized mesh where the relevant areas were encircled by 10
concentric ”rings” simulated by regular 20-sided polygon, the
part outside was triangulation of the vertices of the boundary,
the center point and the outermost ”ring”. The circumradius
of the rings in virtual mesh were 0.3, 0.5, 0.7, 0.9, 1.1, 1.3,
1.5, 1.7, 1.9, 2.0, whereas the vertices of these rings in real
rings were transformed by the Eqn.3.

Optimization Approach was based on a triangle mesh grid
consisted of triangles (Fig.3a), the height and width of the
isosceles triangles were both set to 0.25 and the ones on the
boundary were halved. In order to reduce the difficulty of
optimization, we expanded the triangles covered by relevant
areas and kept the others unchanged, then the entire generated
mesh is scaled down by 2 in each dimension. The ObjArea of
triangles covered completely by the relevant regions were set
to 4 times of its original area, whereas irrelevant triangles were
set to its original area. The AreaWeight and AngleWeight
were set to 4000 and 1 universally.

(a) Virtual Mesh (b) Real Mesh

Fig. 2: Pressure Ring

Mesh generation for Lattice Crush uses the same triangle
mesh grid (Fig.3a) as Optimization Approach, the mesh is also
shrunk by a factor of 2 (Fig.3b), to which the Lattice Crush
approach detailed in this report is applied.

2) Test Environment
Due to the ongoing pandemic over the course of our

research, we were unable to access VR Labs at UCL to
gather experimental data from real users. Therefore in our
experiment, we sought to simulate a real user’s navigation
pattern using a Bot script written in C#, attached to a game
object within Unity. We decided to build this Bot in a Unity

5

(a) Virtual (b) Real (Lattice Crush) (c) Real (Optimization)

Fig. 3: Lattice Crush and Optimization Meshes

(a) Virtual Mesh (b) Real Mesh

Fig. 4: Reverse Lattice Crush

environment so that if experiments with real users become
possible, we can quickly replicate the experiment within the
same virtual environment.

The experiment is set up similarly to NaviFields [5], with 6
flags located in the virtual environment (VE), evenly spaced as
a regular hexagon and positioned a fixed distance of 4m from
the center. We use a scaling factor of 2 between the 6x6m real
environment (RE) and 12x12m VE.

Fig. 5: Real Environment (left) and Virtual Environment (right)

Within this environment setup, we enumerated every path
that goes through a 3 and 5 flags sequence, grouped them by
test suites of the same optimal path distance, and ran the Bot
on each trial. Within each trial, the bot begins from the center
of the VE, navigates to 3 or 5 flags in order, and returns to
the center of the VE. This ensures that the bot will travel a
closed path in each trial, so that we can verify experimentally
whether our techniques are Drift-free.

When building the Bot, our aim was to have it behave
similarly to real users navigating within the VE. Specifically,
the Bot simulates three states of a real user during navigation:

accelerating or decelerating when nearby a target, stationary
rotation when turning towards the next target, and constant
speed walking in between.

The Bot game object is created as a 0.35x0.5m rectangular
prism with a height of 1.8m, to approximate the proportions of
an adult male. The constant walking speed for the Bot is set to
1.4m/s, corresponding to the walking speed of an average adult
[6]. The Bot maintains its position in the RE and VE, which
we’ll refer to as its real position (RP) and virtual position
(VP).

At the start of a trial, RP and VP are both at the center
of the RE and VE. Before moving towards it’s first target,
the Bot begins by orienting itself to the target. It calculates
the difference between the target position (TP) and VP, then
uses this to compute the target angle [0, 360] in degrees.
It computes the difference between the target angle, and the
rotation of the Bot (identical in virtual and real), and rotates
clockwise or anticlockwise by 5 degrees every 0.02 seconds
(or 250 degrees per second), depending on which rotation
requires less than 180 degrees to reach the target.

Once the Bot is aligned to the direction of the target in
VE, it begins accelerating, with the walking speed of 1.4m/s
scaled by a speed scaling factor s capped at 1, computed as
s = 0.1 + d, where d is the distance from VP to the nearest
TP. For example, when the Bot is starting a trial, d = 0, s
= 0.1, so the starting speed is 0.1 × 1.4 = 0.14m/s. As the
trial continues, s will increase up to 1, corresponding to a max
speed of 1.4m/s when the Bot’s VP is ≥ 0.9m or further from
the nearest TP.

Every 0.02s, the RP is translated forwards using the unit
forward vector associated with its game object by v × s × t,
where v is the fixed speed of the Bot 1.4m/s, s is the speed
scaling factor, and t is the elapsed time between function calls
at 0.02s. The VP is updated by translating the new RP to it’s
coordinates in VE by finding its equivalent encompassing vec-
tors and using barycentric mapping to transform its coordinates
from real to virtual.

When the Bot’s VP is within 1.1m of the target flag,
it begins to decelerate, with s decreasing from 1 to 0.1,
corresponding to the distance of 1.1 to 0.2m from the flag.
The Bot updates its target to the next flag as soon as it’s
0.2m from the flag, and begins the process of orienting itself,
accelerating, traveling at fixed speed (in RE), and decelerating
again.

B. Data Collection

Meshes for the real world and its corresponding virtual
world were generated using each proposed navigation tech-
nique, represented in the form of its vertices and indices. These
were then serialised into mesh files and then subsequently
deserialised in Unity 3D into mesh objects for testing.

Certain variables were measured on the real and virtual bot
during the simulation experiments: Completion time (CT), real
distance travelled (RD), trajectory deviation (TD) and angle
deviation (AD). CT is the time taken for the virtual bot to
leave and return back to the centre. TD is the ratio between
the total displacement distance of the virtual bot travelled and

6

its optimum path (travelling in linear paths between the each
of the bot’s stationary points in the relevant areas) and lastly,
AD is the absolute angle difference between the direction of
the path taken by the real bot and the virtual bot in each frame.

Prior to each simulation, the scale and positioning of the
testing environment in Unity were adjusted based on the
meshes given and the conditions outlined in each test suite.
In each simulation run, the metrics and positional data are
recorded for both the real and virtual movements during each
run were measured from the bot at a fixed rate of 50 frames
per second and written to files for analysis.

C. Metrics

Although the Unity simulator have captured several met-
rics as above mentioned, the property of the aforementioned
simulation determines that CT and RD will be quite similar
across different techniques, since the bot is programmed to
move along side the certain path in real space and always
keep the same speed at each corresponding frame. However,
these metrics would become effective in the study involving
the actual VR users. According to Nilsson et al. [23], in
most of redirected walking user case studies, people would
feel cybersickness when experiencing large discrepancies of
curvature gains and translation gain.

To evaluate the performance of this specific simulation
experiment, this paper primarily focuses on two metrics,
specifically, angle differences between real and virtual dis-
placement and scaling factor changing during movements.
However, the metrics from Unity alone cannot reflect the user
experience directly, hence, two analytic methods are used for
processing the draft metrics, which are changing gradient and
accumulation effects.

The integration of scaling factor changing over virtual space
(ISFCR) representing the accumulation of changing scaling
factor and it can be expressed as following: where ∆V and
∆R stands for the displacement in virtual and real space
respectively: ∑

∆V

abs(
||∆V ||
||∆R||

− 1) ∗ ||∆V || (8)

It is worth noting that this integration is only calculated within
the relevant area, since all scaling navigation techniques will
have the same accumulation of scaling factor changing after
travelling a certain distance, while the distribution of the
scaling factor changing varies. Also, from the purpose of the
relevant area, the scaling factor of new methods are expected
to be as closed to 1.0 as possible within the relevant area.
Correspondingly, the smaller ISFCR represents a better per-
formance of this technique so that the users could experience
more natural navigation within the relevant area.

For the other perspective of scaling factor, the gradient of
scaling factor against virtual distance travelled (GSF) demon-
strates how fast the scaling factor is changing and the equation
can be written as follows, where dS means the changing of
scaling factor, and d||V || means the virtual displacement:

max(
dS

d||V ||
) (9)

The maximum value shows the worst case of scaling factor
changes, hence, the higher value illustrates a poor performance
of the technique. This value reflects the how severe the user
could experience the variation of scaling.

Similarly, the analysis adopts the accumulation method for
the angle differences (IADA & IADR), where it uses Θ
to represent the angle difference between virtual and real
displacement in degrees as the equation below shows:∑

∆V

Θ ∗ ||∆V || (10)

This quantifies the angle error the user could experience when
travelling across the entire virtual space. Unlike scaling factor,
some of the approaches do not have angle difference such as
NaviField [5], so that it is worth to evaluate the integration
across the entire virtual space. In the benchmark, we evaluate
the angle differences both within the relevant area and across
the entire virtual distance travelled.

The gradient of angle differences (GAD) versus virtual
distance travelled is also a vital metric, which represents how
fast the angle would change within a certain virtual distance.
The equation is written as:

max(
dΘ

d||V ||
) (11)

Similar to GSF, the paper takes the maximum to represent the
worst case, consequently, the higher value suggests a mediocre
result and this value illustrates the severity in the variation of
angle differences.

D. Benchmarks

To assess and evaluate the performance and effectiveness
across above-proposed 4 techniques, this article would first
analyse NaviFields which is the baseline for the evaluation
to illustrate the advantage of the MBTs in this paper. The
motivation of the paper indicates the research aims to propose
a metaphor where it is Drift-free and maintains 1-to-1 mapping
within the relevant area.

Previous study on NaviFields and Drift Correction method
show that a noticeable effect of 0.6 metre and 0.2 metre for
with and without drift-corrected methods respectively, hence
the benchmark after would demonstrate the drift gain for each
method. Also, by definition of NaviFields the relevant area is
defined as 1-to-1 mapping, i.e. natural navigation, so that the
ISFCR can be regarded as 0 within random error. Whereas
techniques proposed in this paper require further analysis on
the benchmark.

Figure 6-10 provides an overview of the results obtained
from this research, showing the final average and standard
deviation of the five metrics mentioned above i.e. ISFCR, GSF,
IADR, IADA and GAD for each test suite. These test suites
are ordered by the distance travelled in virtual space and the
number of flags the bot visited.

In the research hypothesis, the paper has demonstrated
that all MBTs aim to eliminate drift effects when the user
travels across the virtual environment. This paper compares
the coordinates between where the bot begins and where the
bot ends and calculates the distance between the two points,

7

Fig. 6: The bar chart demonstrating the accumulation effect
of scaling factor differences to scaling factor of 1 within the
relevant area (ISFCR).

Fig. 7: The bar chart demonstrating the accumulation effect of
angle error to within the relevant area (IADR).

Fig. 8: The bar chart demonstrating the accumulation effect of
angle error across the whole path the bot travelled (IADA).

Fig. 9: The bar chart demonstrating the maximum gradient of
scaling factor changing across the whole path the bot travelled
(GSF).

Fig. 10: The bar chart demonstrating the maximum gradient
of angle difference changing across the whole path the bot
travelled (GAD).

the drift gain [6] is at the magnitude of 10−3 metre for every
technique proposed in the paper. Hence, our experiment shows
that for each test trial, the bot could return back to the origin
where it starts from within the random error.

Besides the drift effect, this paper evaluates the natural
navigation within the relevant area by examining the accu-
mulation changing error within the relevant area as figure 6
and 7 demonstrate. This metric is used for demonstrating the
naturalness of travelling in the relevant area, where the low
value suggests that it is close to natural navigation.

Additionally, it analyses the angle error across the entire
virtual distance travelled, where the accumulation effects are
plotted in figure 8 and along with two more metrics, maximum
gradient of angle difference and scaling factor difference to 1
respectively, are adopted to quantify the overall experience
of the bot. These three metrics indicate how VR users might
perceive their navigation through the environment during the
whole trial.

V. ANALYSIS OF RESULTS

In this section, we present and analyse the result of the
bot simulation on meshes generated by different techniques
(Pressure Ring (PR), Optimization Approach (OA), Lattice
Crush (LC), Reverse Lattice Crush (RLC)). The means and
standard deviations of the aforementioned metrics of 16 dif-
ferent test suites are plotted. The test suites are numbered
such that the bot is given 3 targets in test suites No.1-5 and
5 targets in test suites No.6-14. In addition, within the two
groups of test suites, they are ordered in an increasing order
of length of optimal path. The primary concern here is to
compare different mesh manipulation techniques with respect
to their performance on distortion and scaling.

In terms of the performance of navigating in the relevant
area (Fig.6,7), Pressure Ring is almost identical to natural
navigation and has a significantly better result than all the
others. A clear pattern of accumulated scaling difference is
shown (Fig.6). Lattice Crush came second, Reverse Lattice
Crush was third, finally Optimisation approach was the worst.
Intriguingly, Lattice Crush’s performance seemingly improves
with an increased length of the optimal path. As for accu-
mulated angle error (Fig.7), the performance of Optimization
Approach and Reverse Lattice Crush are worse than that of
Lattice Crush with substantially more angle error.

8

Angle error outside of the relevant area is critical as well.
Accumulation of angle error over the entire lifetime of the bot
(Fig.8) indicates that the bot experienced remarkably more dis-
tortion than the others. In contrast, Lattice Crush has the least
distortion; the distortion of Pressure Ring and Optimization
Approach are similar and are both slightly greater than Lattice
Crush; Reverse Lattice Crush is by far the worst performer.

The maximum scaling gradient (Fig.9) and the maximum
angle difference gradient (Fig.10) account for the changes of
scaling and angle difference. Lattice Crush performs the best
in both measures, followed by Pressure Ring; Optimization
Approach and finally Reverse Lattice Crush.

In conclusion, if the performance in relevant area is the
priority, then Pressure Ring could be the suitable technique to
apply. However, while sacrificing performance in the relevant
areas, Lattice Crush provides the best overall performance
across the entire virtual space. Reverse Lattice Crush produces
the most angle error and Optimization Approach does not
perform well both inside and outside of the relevant area, so,
unless they are improved in the future, these two mesh manip-
ulation techniques are not suitable for mesh-based navigation.

VI. DISCUSSION AND LIMITATIONS

Our analysis produced a few key results. Both Lattice Crush
and Pressure Ring come out as having good potential for
further review. Pressure Ring is very good at achieving 1:1
scaling with reasonable changes in scaling to the less relevant
areas, whereas Lattice Crush minimises angle error. We believe
that with further research, either of these techniques could
present a viable new navigation technique. This does not
discount either the Optimisation Approach or Reverse Lattice
Crush, as it is possible that with further tweaks or with
different experimental design these techniques may reveal
advantages not exposed in this report.

The effectiveness in both perceptibly and effective scaling of
all discussed Mesh-Based Techniques will inevitably depend
heavily on the exact layout of the virtual environment used.
Similarly to NaviFields, the techniques will be most effective
when environments have areas of varying degrees of relevancy.
Without this variance these techniques will perform very
similarly to homogeneous scaling. However Lattice Crush in
particular will benefit from a careful application of scaling
due to issues regarding borders between areas of high and
low relevance, discussed later in this section.

In the NaviFields paper, it is suggested that the navigation
field used in the technique could be initially homogeneous
and then adapted through clustering techniques as the user
moves through the environment. Such an implementation
could potentially be possible with Lattice Crush, as the weights
of edges could be increased or decreased depending on how
much time the user spends there. This may also be possible
with Pressure Ring by adding rings to areas the user spends
the most time in.

Some of the most important limitations with our experi-
ment relate to the Bot. Although the Bot provides a coarse
simulation of a real user’s navigation, user experience is very
important when evaluating the performance of a navigation

technique. Subjective metrics such as Ease, Comfort [5],
Control, Natural [6] cannot be measured by a Bot, but is
an important part of evaluating any navigation technique.
Although some predictions can be made based on a visual
assessment during the trials or analysis of the data, we do not
know for certain how users will perceive these techniques.

Additionally, the real-world Bot moved under the assump-
tion that it could instantly process the direction to take at
all times, when in reality the distortions in the mapping can
affect the spatial perception of the user. Not having access to a
headset also prevented us from investigating the effect of our
meshes on manoeuvring. Perhaps one upside of using the bot
versus a headset is that the measured TD was unaffected by the
lateral movements produced if we were to use a VR headset,
an issue mentioned by Montano et al. [5]; our calculated value
was only concerned with the movement of the torso.

Besides the Bot, there are further limitations with our
Experiment Design. Firstly, although we’ve set up the test
environment in a similar manner to NaviFields [5], we cannot
do a direct comparison since we selected a different sized
Real Environment (RE). In the NaviFields paper, a 3x3m RE
is used, but we’re simulating our Bot within a 6x6m RE, due
to constraints imposed by Pressure Ring.

In addition, we’ve only conducted tests for a scaling factor
of 2 between VE and RE. Therefore, it remains unclear how
performance would be impacted for other mesh generation
techniques if we raise this scaling factor to 4 or 8.

This experiment used NaviFields as the baseline, however it
was not included in our simulations. Hence, we do not have an
equivalent data-set for NaviFields from our experiments. Al-
though we can see the relative performance of using different
mesh generation techniques, it’s less clear how each technique
performs against other Scale Adaptive navigation techniques
previously mentioned.

The key limitation of Lattice Crush is the inability to achieve
the large changes in scaling across a mesh that Pressure
Ring is able to do. During earlier testing we found that
as we produced scaling closer to 1:1 in the relevant areas,
the boundary between the relevant and less relevant areas
became much more pronounced, to the point where we saw
the virtual bot teleport across the boundary. This means that
for our particular test setup we are unable to achieve natural
walking (1:1 scaling) within the highly relevant areas as was
demonstrated in the experiment.

An issue with Reverse Lattice Crush is that the optimization
step is a global operation. The entire mesh is moved around
when stretching out the denser parts of the virtual mesh. While
this is unsurprising for the points of interest, it also creates
both angular and scaling distortions in parts of the mesh that
should have been homogeneously scaled. The distortion pro-
duced is reflected by having the largest accumulation of angle
error among all techniques (Fig.8). Furthermore, because the
triangle density of the VE varies depending on the relevance
map, the factor to downscale the optimized mesh by to reach
1:1 scaling factor in areas of high relevance is not constant.
This makes reaching 1:1 scaling factor difficult and often
inexact as a result. Regardless, Reverse Lattice Crush still has
a decent performance in terms of scaling inside the relevant

9

area (Fig.6).
Despite being able to provide interaction much similar to

natural navigation in the relevant area, Pressure Ring imposes
extra constraints on the design of the virtual space. For
instance, assuming the scaling factor of k is to be adopted, the
constraint is that kRin < Rout. The intersection of different
pairs of rings is also undefined, consequently, the regions
of natural navigation must be separated by certain distances.
Also, the total area of these regions inside a given virtual
space is limited, and the shape of these regions are limited by
a regular polygon. Angle errors exist at coordinates within the
set differences of two rings. Pressure Ring also compresses
the space in those regions and the average scaling factor is
increased, as a result, users traveling towards the center of
relevant area will first experience an increase in the scaling
followed by a sudden discrete drop to 1, where gradual con-
tinuous change is more favourable. The above two drawbacks
can be mitigated by increasing Rout. The average angle error
can be decreased and the difference in scaling factor when
entering the rings can also be minimised, but the sudden drop
to scaling factor 1 is inevitable with Pressure Ring. However,
increasing Rout strengthens the design constraints mentioned
above and fewer natural navigation areas are allowed. So, there
is a trade-off between user experience and design constraints.

Compared to Pressure Ring, the Optimization Approach
does not have the aforementioned explicit design constraints,
allowing natural navigation regions of more complicated
shapes to be implemented and placed close to each other.
However, implicit constraints still exist, although the cost
function penalizing transformations producing a mesh that has
overlapped triangles, optimization can still produce meshes
that are undefined for our bijective mapping if the natural
navigation regions are set to be too large.

VII. CONCLUSION AND FUTURE WORK

In this paper, we explored Mesh-Based Techniques (MBTs),
a Drift-free category of natural navigation techniques which
uses barycentric coordinates and a pair of real and virtual
triangular meshes to establish a bijective mapping between
real and virtual spaces in VR. These techniques extend the
navigable space in VE as with SATs but avoids technique-
induced drift.

We provide the mathematical characterisation and imple-
mentation of four different MBTs: Lattice Crush, Reverse
Lattice Crush, Pressure Ring, and Optimization Approach. We
implemented a test environment and created a Bot to provide
a coarse simulation of real user navigation patterns, in order to
evaluate performance for each technique using derived metrics
when users perform a comprehensive set of 3 and 5 flag
travelling tasks.

Analysis of the results show that Pressure Ring is ideal for
applications requiring 1:1 scaling within the relevant areas,
whereas Lattice Crush performs best in minimising accumula-
tion of angle error, and has a smoother change in scaling factor
and angle difference in travelling tasks, providing a better
overall performance. We believe with further development and
real user testing, MBTs could serve as useful alternatives to
existing SATs for extended navigation within small real spaces.

In future work, we plan to conduct the experiment with real
users, using a similar design to the one in the Drift Correction
Techniques paper [6]. We would collect objective metrics like
the ones in our current experiment, and collect a range of
subjective impressions such as Comfort, Ease, and Control.

It would also be worth exploring a range of scaling factors
to determine how effective these Mesh-Based Techniques are
when subject to higher scaling. Under a real user study, a clear
limit in the scaling can be found when movement becomes too
distorted and therefore not viable to use.

We would also like to conduct a user experiment for
Maneuvering Tasks, similar to that in NaviFields [5], which
involves tasks that require precise movements. We would
be interested to find out how our technique compares with
NaviFields when using real users.

In addition, it would be useful to establish a more precise
relationship between the subjective user experience and ob-
servable objective measures. For example, what magnitude of
angle deviation is imperceptible to a user, and what is the
threshold where the angle deviation becomes intolerable? Es-
tablishing these relationships would enable researchers to build
better automated testing and evaluation tools for navigation
techniques proposed in the future.

REFERENCES

[1] M. Al Zayer, P. MacNeilage, and E. Folmer, “Virtual locomotion: a
survey,” IEEE transactions on visualization and computer graphics,
vol. 26, no. 6, pp. 2315–2334, 2018.

[2] I. E. Sutherland, “The ultimate display,” pp. 506–508, 1965.
[3] J. J. LaViola Jr, E. Kruijff, R. P. McMahan, D. Bowman, and I. P.

Poupyrev, 3D user interfaces: theory and practice. Addison-Wesley
Professional, 2017.

[4] D. A. Bowman, E. Kruijff, J. J. LaViola Jr, and I. Poupyrev, “An
introduction to 3-d user interface design,” Presence: Teleoperators &
Virtual Environments, vol. 10, no. 1, pp. 96–108, 2001.

[5] R. A. Montano Murillo, E. Gatti, M. Oliver Segovia, M. Obrist, J. P.
Molina Masso, and D. Martinez Plasencia, “Navifields: Relevance fields
for adaptive vr navigation,” in Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology, 2017, pp. 747–
758.

[6] R. A. Montano-Murillo, P. I. Cornelio-Martinez, S. Subramanian, and
D. Martinez-Plasencia, “Drift-correction techniques for scale-adaptive
vr navigation,” in Proceedings of the 32nd Annual ACM Symposium on
User Interface Software and Technology, 2019, pp. 1123–1135.

[7] N. C. Nilsson, S. Serafin, F. Steinicke, and R. Nordahl, “Natural walking
in virtual reality: A review,” Computers in Entertainment (CIE), vol. 16,
no. 2, pp. 1–22, 2018.

[8] R. P. Darken, W. R. Cockayne, and D. Carmein, “The omni-directional
treadmill: a locomotion device for virtual worlds,” in Proceedings of the
10th annual ACM symposium on User interface software and technology,
1997, pp. 213–221.

[9] E. Medina, R. Fruland, and S. Weghorst, “Virtusphere: Walking in a
human size vr “hamster ball”,” in Proceedings of the Human Factors
and Ergonomics Society Annual Meeting, vol. 52, no. 27. SAGE
Publications Sage CA: Los Angeles, CA, 2008, pp. 2102–2106.

[10] N. C. Nilsson, S. Serafin, and R. Nordahl, “The perceived naturalness
of virtual locomotion methods devoid of explicit leg movements,” in
Proceedings of Motion on Games, 2013, pp. 155–164.

[11] J. Feasel, M. C. Whitton, and J. D. Wendt, “Llcm-wip: Low-latency,
continuous-motion walking-in-place,” in 2008 IEEE symposium on 3D
user interfaces. IEEE, 2008, pp. 97–104.

[12] J. N. Templeman, P. S. Denbrook, and L. E. Sibert, “Virtual locomotion:
Walking in place through virtual environments,” Presence, vol. 8, no. 6,
pp. 598–617, 1999.

[13] S. Razzaque, D. Swapp, M. Slater, M. C. Whitton, and A. Steed,
“Redirected walking in place,” in EGVE, vol. 2, 2002, pp. 123–130.

10

[14] E. A. Suma, Z. Lipps, S. Finkelstein, D. M. Krum, and M. Bolas,
“Impossible spaces: Maximizing natural walking in virtual environments
with self-overlapping architecture,” IEEE Transactions on Visualization
and Computer Graphics, vol. 18, no. 4, pp. 555–564, 2012.

[15] T. Grechkin, J. Thomas, M. Azmandian, M. Bolas, and E. Suma,
“Revisiting detection thresholds for redirected walking: Combining
translation and curvature gains,” in Proceedings of the ACM Symposium
on Applied Perception, 2016, pp. 113–120.

[16] J. D. Mackinlay, S. K. Card, and G. G. Robertson, “Rapid controlled
movement through a virtual 3d workspace,” in Proceedings of the 17th
annual conference on Computer graphics and interactive techniques,
1990, pp. 171–176.

[17] X. Xie, Q. Lin, H. Wu, G. Narasimham, T. P. McNamara, J. Rieser, and
B. Bodenheimer, “A system for exploring large virtual environments that
combines scaled translational gain and interventions,” in Proceedings of
the 7th Symposium on Applied Perception in Graphics and Visualization,
2010, pp. 65–72.

[18] T. Oskiper, H.-P. Chiu, Z. Zhu, S. Samaresekera, and R. Kumar, “Stable
vision-aided navigation for large-area augmented reality,” in 2011 IEEE
Virtual Reality Conference. IEEE, 2011, pp. 63–70.

[19] V. Interrante, B. Ries, and L. Anderson, “Seven league boots: A new
metaphor for augmented locomotion through moderately large scale
immersive virtual environments,” in 2007 IEEE Symposium on 3D User
interfaces. IEEE, 2007.

[20] “networkx.org,” https://networkx.org/.
[21] “Physics classroom - addition of forces,”

https://www.physicsclassroom.com/class/vectors/Lesson-3/Addition-
of-Forces.

[22] “Mathematics stack exchange - find a point
on a line segment, located at distance
https://www.overleaf.com/project/6029865a48e426a18756648cd from
one endpoint,” https://math.stackexchange.com/questions/134112/find-
a-point-on-a-line-segment-located-at-a-distance-d-from-one-endpoint.

[23] N. C. Nilsson, T. Peck, G. Bruder, E. Hodgson, S. Serafin, M. Whitton,
F. Steinicke, and E. S. Rosenberg, “15 years of research on redirected
walking in immersive virtual environments,” IEEE computer graphics
and applications, vol. 38, no. 2, pp. 44–56, 2018.

