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Abstract

To many, Android malware classification is considered a solved problem. Modern classification
approaches can now produce results at near-perfect accuracy, precision, and recall. However, these
malware classifiers are still subject to the problem of concept drift, in particular the decline of
the quality of a trained classifier over time. Many approaches, such as statistical assessment and
incremental retraining, have been put forward to solve this. Instead of proposing a solution to detect
or fix concept drift once it arises, this paper instead focuses on the classification pipeline itself, the
process of converting an initial set of APKs to a working classifier. Through experimentation,
we can draw insights into how varying different elements of the classifier, including the feature
space, representation, classification method, and dataset size, can influence the resulting concept
drift.

By creating four different experiments on three different feature sets using the TESSERACT frame-
work, we can vary the aforementioned aspects of the pipeline to produce a set of results demonstrating
the effect in terms of concept drift over time. Our results demonstrate that these variations to the
classification pipeline can produce interesting effects on the resulting concept drift. Firstly we find
that for features in a set, the feature that reduced concept drift the most is most likely the one
with the largest number of elements rather than any other variable. Secondly, we find classification
approaches do not necessarily behave as expected under concept drift, with more complex classifi-
cation methods often performing worse than more simple ones. Thirdly, we observe that generally,
vectorization approaches have a much less significant effect than classification approaches. Finally,
we see that a smaller feature set size is heavily correlated with a much more variable output.
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Chapter 1

Introduction

As of 2021, there were 3 billion active Android devices [1] in use around the world, giving Android
a very dominant stake in the world of mobile operating systems. Unfortunately due to the huge
popularity of the Android operating system, and its relative vulnerability in comparison to IOS [2],
the platform is very often a target for malicious actors [62]. As such, high-quality Android malware
detection is vital.

There is a huge amount of research has been carried out over the years into the issue of Android
malware classification, that is deciding whether an application is most likely malware or not. Huge
numbers of classifiers exist, such as Drebin [3],MaMaDroid [4], Blade [5], and DroidSIFT [6] among
many others, many with high-performance figures to the point where further work to increase the
raw figures could be considered to be of diminishing returns.

Instead of focusing on raw performance figures, this project furthers the work of Pendlebury et al
[7]. As written in the paper, “Malware classifiers operate in dynamic contexts. As malware evolves
and new variants and families appear over time, prediction quality decays. Therefore, temporal
consistency matters for evaluating the effectiveness of a classifier.” This paper focuses on this
temporal inconsistency, otherwise called “concept drift”, “time decay” or simply “drift”. A machine
learning classifier can only learn to solve for the data it has available in its dataset. Even a huge
dataset is unlikely to produce a model that can accurately predict malware into the future, as
methods and approaches slowly change.

The TESSERACT paper demonstrates various effects and mitigation strategies of drift throughout
their report on three classification algorithms, Drebin, MaMaDroid, and a Deep Learning example.
To extend this work, this report uses Drebin, MaMaDroid, and BLADE to draw novel comparisons
between classification methods in the context of concept drift. Understanding the relationship
between different analysis methods, their accuracy and precision through the use of F-measures,
and complexity, while accounting for the effect of concept drift. This is vital in gaining a better
understanding of the problem so that future researchers can be better able to pick classification
approaches that are as resistant to concept drift as possible while still accounting for other important
factors important in their specific context.
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1.1 Approach

This project was carried out with an iterative approach. The first iteration involved the exploration
and development of a pipeline that would take in relevant feature spaces (sets of features from
Android APKs), represent them in vector space, perform learning-based detection to build a malware
classifier, and then run within the TESSERACT testing environment to perform time-sensitive
analysis on the classifiers we create. From then on iterations added new features and explorations to
this pipeline, allowing me to produce more data to analyse. The final runs of the four experiments
seen in this experiment were conducted towards the end of the project, with the data from those
experiments being the basis for our conclusions in this paper.

1.1.1 Aims and Objectives

1.1.2 Aims

In this paper, we aim to explore different program analysis techniques, representations and other
variables across the Android malware classification pipeline to determine the relative advantages
and disadvantages of variations in approach, with a particular focus on concept drift. By build-
ing pipelines with different approaches in program analysis, data representations, and classification
models, we can compare how different techniques affect key variables such as accuracy, cost (in terms
of time/resource requirements), performance decay over time (concept drift), and understandabil-
ity, among others. Using this understanding we can make suggestions as to the best approach to
take depending on the use case and contrast with current existing classification approaches in the
literature.

To achieve this aim, we intend to answer four distinct research questions, each focusing on a different
aspect of Android malware classification and its effect on concept drift.

1. RQ1 - Are metadata-based features, such as permissions, more resilient to concept drift than
those assembled from the bytecode?

2. RQ2 - What is the effect of machine learning classification approach on concept drift in the
context of different program analysis techniques?

3. RQ3 - What is the effect of feature representation on concept drift in the context of different
program analysis techniques?

4. RQ4 - What is the effect of dataset size on concept drift in the context of different program
analysis techniques?

1.1.3 Objectives

1. Review current literature surrounding both Android malware classification and program anal-
ysis as a whole with the aim of finding current approaches

2. Review feature spaces and program analysis strategy that could produce interesting results,
along with some potential candidates for machine learning techniques, and decide on what to
pursue within the project.

3. Develop a pipeline using the TESSERACT [7] codebase that allows variation in approach for
variables such as feature set and program analysis strategy, machine learning techniques, and
data representation.
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4. Evaluate the effectiveness of these techniques, against both themselves and existing techniques
in the literature. In particular, we are looking at performance decay alongside accuracy,
precision, and complexity.
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Chapter 2

Background and Literature
Review

2.1 The Classification Pipeline

The available research for Android malware is extensive, with a seemingly endless number of ap-
proaches and optimisations attempting to solve the issue of Android malware classification. In many
of the most prominent classifiers, such as Drebin [3] and MaMaDroid [4], the general pipeline from
data to working classifier is usually the same, as detailed in figure 2.1.

Figure 2.1: Graphical depiction of the pipeline
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2.1.1 Detailed Explanation of Pipeline Elements

Android Application Packages (APKs) The standard format of Android applications is found
in the Google play store as well as other third-party stores. For Android malware classification, sev-
eral large datasets, most notably AndroZoo [8], have hundreds of thousands to millions of individual
APK files, along with appropriate metadata. For this paper, the most important pieces of metadata
associated with each APK is the timestamp for when the APK was created and a malware/benign
classification, usually denoted with malware as the positive case and benign and the negative. In
the case of AndroZoo, each APK is analysed by multiple different antivirus products to provide a
more accurate dataset.

Feature Sets Also called datasets throughout this paper, these are sets of extracted features used
to train the machine learning classifier. Such feature sets can vary quite significantly in layout. For
example, the Drebin feature set consists solely of a set of extracted features, with an APK either
containing or not containing a feature, whereas BLADE datasets consist of a set of extracted opcodes
with an associated frequency.

Representation The raw feature set must be represented in a way that can be used by a machine
learning model. This representation is often achieved with feature vectors [9].

Dataset partitioning - The feature set is partitioned into training and testing sets that can be
used to train the model. Approaches such as train-test-split [10] or Stratified K-folding [11] can be
used to split the dataset into training and test data on which the machine learning model can be
trained. Inside the TESSERACT testing environment, we use a time-aware-train-test-split to split
the dataset into an initial training set of a predetermined size on the earliest features in the dataset,
and a testing set of all future features. This method allows us to determine the effect of concept
drift over time during testing.

Model training The chosen model, for example, a LinearSVC [45] or RandomForestClassifier
[48], is then trained on the dataset splits by fitting the data to the model. Inside the TESSERACT
testing environment, this is achieved with the fit predict update function, which incrementally trains
the classifier on the splits and returns results for us to quantify.

Results The fit predict update function from the TESSERACT codebase returns a dataset of
results, most notably recording F1 scores for each month of training.

2.2 Concept Drift

Concept drift is a form of temporal bias [7] and generally refers to the idea that the patterns and
relations between data will evolve and change over time [15]. “Hidden contexts” and relationships
found by a machine learning model may not remain consistent as a dataset changes [16]. This relates
specifically to Android malware as the malware ecosystem is constantly changing, with new Malware
families and verities being implemented by malicious actors [7]. In 2019, Pendlebury et al [7] created
and reviewed a framework for analysing the effect of concept drift on Android malware classification,
as well as the effect of “Spatial bias”. This framework is called TESSERACT and acts as the basis
and backbone of the research carried out in this paper. The paper’s outcomes, along with what was
left unexplored, heavily influence the direction of this paper.
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The paper introduces both temporal and spatial bias. Temporal bias includes concept drift but
the paper also looked at the detection of “past objects” (malware that is older than the dataset a
classifier has trained on) and differences in the time period between goodware and malware. Spatial
bias includes “assumptions on percentages of malware” in both training and testing datasets.

Of particular interest to this report are the outcomes of time decay analysis. The paper demonstrates
a clear decline in the quality of the evaluation of new malware over a 24 month period for both Drebin
and MaMaDroid, as seen in Figure 2.2. This analysis in its most straightforward form is described
as baseline AUT analysis”.

Figure 2.2: Time evaluation of Drebin (Alg1) and MaMaDroid (Alg2) [7]

TESSERACT also provides a comparison to a deep-learning based approach outlined in a 2018
paper from Suciu et al [12]. Although the details of such an approach are out of the scope of this
paper, TESSERACT can demonstrate the resilience of deep learning approaches in comparison to
the linear classification methods used in Drebin and MaMaDroid.

TESSERACT also spends significant resources analysing effective ways to minimise or delay time
decay. Strategies such as incremental retraining, active learning, and classification with rejection
are demonstrated to be effective methods at reducing the effect of time decay.

This report has a few key limitations, which have become the basis of some of the experiments
detailed in this report. Firstly, this paper does not take into account the wide variety of classification
algorithms available. For example, the report analyses MaMaDroid with a Random Forest classifier
[26], however in the MaMaDroid report, Mariconti et al review their classifier with Random Forest,
1-Nearest Neighbor, 3-Nearest Neighbor, and Support Vector Machines. This limitation is the
motivation for our RQ2.

Secondly, this report does not take into account the effect of variable dataset sizes on the accuracy
and usability of time decay analysis. Mariconti et al based their analysis on a dataset of 129K samples
(8.5K begin and 35.5K malware). The dataset accessible through the TESSERACT source code [13]
contains over 120K samples. However, the number of available APKs used to train classifiers can
change considerably depending on implementation. Using larger or smaller datasets in your training
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sample could impact time decay considerably. This limitation became apparent during this project
when attempting to produce time decay analysis on classifiers using much smaller datasets and
discovering the output produced was completely unusable and acts as justification for RQ4.

This paper also left room for further analysis of time decay on different classifiers as the report only
focuses on Support Vector Machines [21], which acts as part of the justification for RQ2.

Papers such as a 2017 paper from Jordaney et al [18] have proposed mechanisms by which concept
drift can be identified. The aforementioned paper details a statistical comparison approach for
identifying the presence of concept drift in Windows and Android malware classification models.
This approach from Jordaney et al focused on two specific dimensions, the “desired performance
level” and the “proportion of samples in an epoch that [a] malware analysis team is willing to
manually investigate”. This kind of approach is worth noting due to the similarity of the topic,
however, is tangential to the work detailed in this paper. The TESSERACT approach, and by
extension this paper, uses the decline in quality of a classifier over time in a “walled garden” testing
environment, whereas Trancend sets out to quantify concept drift in deployed environments.

2.3 Android malware classifiers

This paper has a particular focus on feature extraction through static program analysis, follow-
ing on from the TESSERACT [7] paper. Dynamic program analysis and feature extraction is
considered out of scope for this project. Well-known and effective Android malware classification
technology, such as Drebin and MaMaDroid, which underpin this paper, engages entirely in static
analysis. Static analysis approaches are sufficient to produce effective and high-quality classification
approaches.

As explained in the classification pipeline overview, concept drift is only a measure of the performance
of a classifier. As such, it is important to understand the state of Android malware classification to
understand current approaches to program analysis abstraction and representation. A particularly
notable approach is DREBIN [3], a “lightweight method for detection of Android malware”. As
previously mentioned, Drebin is used as a benchmark in several papers discussing concept drift and
will be a key benchmark used in this paper as well.

Drebin uses “broad static analysis” to create a feature set of 8 different features. Several of these
features come directly from app metadata, the ”Manifest”. Of particular interest to this project
is Requested Permissions and Used Permissions. The difference in effectiveness between metadata
features such as permissions and features extracted from the binary itself is not something that is
fully explored in the paper, and certainly not something explored in the terms of concept drift.
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Figure 2.3: Top 5 features from FakeInstaller, DroidKungFu, Goldmaster, and GingerMaster families
[3]

Figure 2.4: Contribution of feature sets to the detection of malware families [3]

The Drebin analysed top features used by the Drebin classifier, as seen in Figure 2.3. Although
Suspicious API Call appears the most often, Requested Permissions is also a key element, suggesting
its usefulness in classification. In Figure 2.4, Requested Permissions is the only feature utilised across
all malware families analysed, reinforcing the need for further study.

In this paper, we wanted to explore this further in the context of concept drift, as stated in RQ1,
could “fixed” elements such as permissions prove more resilient to concept drift than more ambiguous
concepts? Unlike other elements, permissions could remain a more consistently employed feature in
malware; as noted in Figure 2.3, spammers will always need to access SEND SMS to achieve their
aims, regardless of how other elements of the application function.

The Drebin classifier is somewhat of an outlier in the way it utilises a range of completely separate
features to classify samples. Another key paper, DroidAPIMiner: Mining API-Level features for
Robust Malware Detection in Android [19], takes a different approach, focusing on the extraction of
Android APIs and package level information from the bytecode. Their approach produced accuracy
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scores “as high as 99%”. Using frequency analysis, the researchers were able to refine a list of
“distinct” (Class Name, Method Name, and Descriptor) APIs associated with malware. These
APIs can be split into categories including Application-specific resource APIs, Android Framework
and System Resource APIs among others. The researchers are also able to collect information
about third-party packages and API Parameters for their data set. The classifier used four different
classification models including K-nearest neighbour [20], Linear Support Vector Machines [21], ID3
Decision Trees [22], and C4.5 Decision Trees [23] and found significant variations in performance
between the four classification methods, as demonstrated in Figures 2.5 and 2.6. This paper helped
reinforce the justification for RQ2, as it demonstrated quite a significant variation in quality between
the four different classification models, further suggesting the need for review in the context of
concept drift. Originally, DroidAPIMinier was going to feature as a comparison in this report,
however, due to some accessibility limitations detailed later in this we were unable to include it.
We do however include in our experiments a classification approach from Mariconti et al known as
MaMaDroid. In the paper, MaMaDroid: Detecting Android Malware by Building Markov Chains
of Behavioral Models [4], their approach is directly compared with DroidAPIMiner and found to
significantly outperform it, potentially limiting the usefulness of including DroidAPIMiner in this
study.

Figure 2.5: Performance of Permission-based Models [19]
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Figure 2.6: Performance of API-based Models [19]

The classification approach from Mariconti et al [4] forms Markov chains “from the sequence of
abstracted API calls performed in the app, and uses it to extract features and perform classification.”
This novel use of Markov chains to create a feature set yielded excellent results, with F1 scores of
up to 99%. However, this approach was not as effective at resisting concept drift as compared to
Drebin [3], as noted in Figure 2.2. Mariconti et al suggest that DroidAPIMiner relies “on most
common calls observed during training”, which “prompts the need for constant retraining, due to
the evolution of malware and the Android API alike”, however, their approach of using sequences
of abstracted API calls allows them to account for changes in the Android API.

Another notable approach to Android malware classification was proposed by Kang et al [24] in
2016, which used a feature set of opcodes extracted from application bytecodes and then classified
with Support Vector Machines, with a final F1 score on their dataset of 2520 samples of 98%. The
key argument in the paper is that many approaches rely on “expert analysis to design or determine
the discriminate features that are passed to the machine learning system used to make the final
classification system”, such as requested permissions or API calls, “excluding potentially useful
learning information”. This approach instead collects all n-opcodes in an application and allows the
classifier to find the most useful features. The evaluation of this approach in the report is somewhat
limited, with a relatively small dataset of samples used for evaluation when compared with other
mainstream papers such as Drebin. Larger datasets may have demonstrated different and more
reliable results. This significant variation in dataset size between papers such as this and others
such as Drebin [3] or MaMaDroid [4] also serves to justify RQ4, as dataset size variance is something
innate within this research space, but is not something that has been explored within the context
of concept drift.

Another issue with Kang et al’s [24] work was a complete lack of available data or source code,
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something that seems to plague this sector of research and something detailed later as a limitation
of this project. As such this work is completely unreproducible. However, a much more recent paper
from 2021 by Sihang et al [5], with available data, had a similar approach. Named BLADE, Sihang
et al’s approach to Android malware classification had a particular focus on beating obfuscation of
Android bytecode by attackers. Their approach “represents each malware sample with [an] Opcode
Segment Document (OSD) generated from its DEX code”, where the DEX code (Dalvik Executable
format) is the bytecode executed at runtime [25], establishing symbols for all 224 Dvalik instructions.
Classification on the extracted feature set is then implemented with C4.5 [23], Random Forest [26]
and Sequential Minimal Optimisation [27]. Experiments were then performed on multiple different
large datasets, including Drebin, giving consistently high F1 and accuracy scores. This project,
therefore, presented a very promising candidate for concept drift experimentation and is a key point
of comparison in this paper.

2.4 Data sets and codebases

As part of research into into related work, this project also reviewed both available datasets and
codebases associated with Android malware classification and concept drift. We were very kindly
provided both the Drebin implementation used by Mariconti et al [7] in their paper and the full
TESSERACT evaluation framework. We were also able to directly access the Drebin and Ma-
MaDroid feature set files used in the TESSERACT paper, which saved a lot of time and effort
required to reproduce them.

In 2014, Drebin was re-implemented in 2017 in a public Github repository owned by user MLDroid.
The exact purpose of this re-implementation is not clear but it could be associated with an Android
malware detection framework also named MLDroid [29]. This implementation features both feature
generation and classification. In testing, we were able to produce features from input APK files
which seemed to be reasonable although no in-depth comparison was done to compare the results
with the feature set from the TESSERACT [7] paper. This re-implementation is notable because
of the various methods by which vectorization of the produced feature set is performed. In earlier
iterations of the codebase (as found in the Github repository), both the DictVectorizer [30] and
TfidfVectorizer [31] from scikit-learn’s [32] python library were considered, with TfidfVectorizer the
one in use at the last commit. In contrast, the TESSERACT [7] implementation of Drebin feature
set classification uses the DictVectorizer. The Drebin paper [3] itself proposes a basic binary vector
embedding for set S, where S := S1 ∪ S2 ∪ ... ∪ S8 for each of the 8 feature sets. They create an
S-dimensional vector ϕ(x) defined for a set of applications X as follows:

ϕ : X → 0, 1|S|, ϕ(x) 7→ (I(x, s))s∈S where indicator function I(x, S) is defined as:

This method of vectorization is represented as the DictVectorizer [30] in the scikit-learn [32] library,
which creates a “one boolean-valued feature ... for each of the possible string values that the feature
can take on.” The TfidfVectorizer in contrast is generally more relevant to analysing long-form text
in documents for Natural Language Processing tasks [33] than classification feature sets and considers
the “term frequency of a word in a document” [33]. This variance in vectorization approach is what
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formed the motivation for RQ3, as it is likely that these different approaches in data representation
would affect resultant concept drift.

During the research phase of this project, we also reviewed an implementation of DroidAPIMiner [34]
created by Chen Jun Hero in 2018. This particular implementation ran well (albeit very slowly) and
produced very reasonable datasets with the APIs we provided, however, we suffered from limitations
with the size of the feature set we could build with available APK files. We were provided with
a subset of 1517 APK files (split between benign and malicious) from the original set used in
the TESSERACT [7] paper, however using this small dataset size inside the TESSERACT testing
environment as detailed in section 3.1 produce completely unusable output, bringing us to the
conclusion that the dataset available to us was simply too small.

Accessible high-quality datasets that can be used for the analysis of concept drift in the context of
Android malware were difficult to find. For many datasets, providing timestamps associated with
each APK (necessary to perform analysis of concept drift over time) is not considered a high priority.
For example, AndroZoo [36], a collection of Android APKs analysed by “tens of different AntiVirus
products” has 18,799,179 APKs available through their API, of which 8,411,143 (44.7%) do not have
an associated release date attached to them.

This problem is only compounded by obsolescence. Many large Android Malware dataset projects
have been abandoned in previous years with final datasets left unreleased. These include the Android
Malware Genome Project [37], the AMD Project (website no longer accessible) [38], and the Android
PRAGuard Dataset [39] which are all now discontinued. This makes a comprehensive analysis of
the Android malware landscape difficult not just for this project but for the research sector as a
whole.
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Chapter 3

Experimental approach

3.1 The Experimental Pipeline

In order to perform our four experiments to answer our four research questions this project relies on
an experimental pipeline using the TESSERACT codebase. This section gives details of each element
that makes up this pipeline and provides a pseudocode outline. The TESSERACT codebase, and
therefore by extension the work carried out by this report, is written in Python 3.7 and uses a number
of libraries including scikit-learn [32] to perform classification and subsequent analysis.

3.1.1 Feature Sets

Our experiments utilise a total of three different feature sets from three different classifiers in order
to give insights into the effect of various feature abstractions.

Our Drebin [3] feature set is the set used as part of the TESSERACT [7] paper. It features 129728
elements made up of 7 features, with more detail outlined in section 4.1.1.

Our MaMaDroid feature set was also used as part of the TESSERACT [7] paper. It features a full
set of extracted features from the same 129728 original applications as the Drebin feature set. These
features are the extracted Markov chains detailed in the MaMaDroid [4] paper.

The BLADE [5] feature set was assembled from two different sources. The BLADE dataset - featuring
a set of OSD documents (as explained in section 2.3, was released on Kaggle [42], a “machine learning
and data science community” featuring ML related public datasets. Sadly the source code for the
dataset is unavailable so it is not possible to directly verify the data, but the results seen below
provide solid evidence that the data provided is of good quality.

The dataset provided on Kaggle consists of feature sets created from collections including AndroAu-
topsy [43], AndroTracker, Drebin, and PRAGuard [39]. However, this data was difficult to work
with. For the Drebin dataset, the collection did not feature benign samples, only malware, making
it redundant. There were also no timestamps within the dataset, which are required for analysis of
concept drift through time. In order to solve this problem, we combined the AndroAutopsy dataset
of benign and malware samples with the textual description of the dataset that contained the rel-
evant timestamps to produce the dataset of 8948 items. This difference in the size of the dataset
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between BLADE and the other two datasets has a substantial impact on the results seen later in
this report.

3.1.2 Representation & Classification

The method of representation and classification will vary depending on the experiment. In these
experiments we define the default method to vectorize the features using the DictVectorizer [30] and
then classify with scikit-learn’s LinearSVC (support vector classifier) [45]. As we vary different parts
of the experimental pipeline in our four experiments, it is important to define a baseline on which
other results are compared. Choosing this combination is firstly due to its use as the vectorizer and
classifier of choice for the TESSERACT [7] project. Using these, therefore, gives us grounding in
previously completed work and makes it easier to make direct comparisons, Secondly, these methods
already give good results, and so any improvements we can make will represent novel contributions
to this area of research. In the MaMaDroid [4] paper, the LinearSVC classifier is regarded as less
useful than the other ones tested, however, given its usefulness for Drebin and fast training time, it is
still a very reasonable pick as the default classifier for these experiments. It is important to note that
although the RandomForestClassifier [48] is the classification method of choice for MaMaDroid and
BLADE [5], training on this classifier on available hardware took about half an hour for MaMaDroid
and about five hours for Drebin. Using this method as a default in other experiments would have
been extremely impractical.

3.1.3 Result plotting

TESSERACT produces a set of results to demonstrate concept drift. After training the dataset
over a specified number of months at the beginning of the time period, where the time period is
the period of time for which we have data to analyse in the dataset, TESSERACT then returns
the F1 scores obtained by testing the trained classifier on each subsequent month in the dataset.
For Drebin and MaMaDroid we train on 12 months and test on 24, and for Blade we train on 10
months and test on 12 due to the reduced dataset size. Graphs can then be plotted demonstrating
the negative and positive class F1 scores for each month. In this case, the negative class represents
goodware and the positive class malware. The discussion in the subsequent experiments focuses on
the positive class (malware) as the negative class (goodware) results are usually close to perfect.
Goodware (gw) results are always shown with the dotted lines, with malware (mw) shown with the
solid lines.

3.1.4 Pipeline pseudo-code

The general framework in which this project’s experiments are run is referred to as the TESSERACT
[7] testing environment. Algorithm 1 gives a high-level overview.

Algorithm 1 TESSERACT testing environment pseudo-code

Load dataset into X (features), Y (classification), and t (timestamp)
Perform a fit transform [63] using a vectorizer
Perform a “time aware” partition of the dataset
Perform a sliding window classification on the timestamp partitioned dataset with a particular
classifier type
Plot F1 results and calculate AUT scores
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The full implementation of this algorithm is available in Appendix A, figure A.2

3.1.5 Classifier baselines

We can run our three feature sets with default parameters inside our TESSERACT testing environ-
ment set up for this project to produce some initial time-aware analysis that can act as both a useful
explainer for the kind of output the TESSERACT testing environment can create and a baseline
for future results. Figures 3.1, 3.2, and 3.3 give the analysis for Drebin [3], MaMaDroid [4], and
BLADE [5] respectively.

Figure 3.1: Drebin [3] default output in TESSERACT testing environment (DictVectorizer & Lin-
earSVC)
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Figure 3.2: MaMaDroid [4] default output in TESSERACT testing environment (DictVectorizer &
LinearSVC)

Figure 3.3: BLADE [5] default output in TESSERACT testing environment (DictVectorizer &
LinearSVC)

The results for Drebin and MaMaDroid we produce in our environment can be compared to the
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results achieved in Pendlebury et al’s [7] paper detailing the TESSERACT environment. We have
the figures from the report available in figure 2.2. We can observe the results we achieve for Drebin
are nearly identical to the results achieved in the TESSERACT paper. This is very promising and
suggests we have set up our environment correctly, however this is not the case for MaMaDroid,
where although a similar trend is produced, the F1 scores are simply not as high. In the original
TESSERACT paper, MaMaDroid was represented with the RandomForestClassifier rather than the
LinearSVC, which would explain the difference between the scores in the TESSERACT paper and
the scores we produce in our testing environment. Later on, in the second experiment, detailed
in section 4.2, we do run MaMaDroid with a RandomForestClassifier and although produced are
similar, the two graphs still do not match. This is most likely down to slightly different parameters
set in the RandomForestClassifier between this report and the TESSERACT paper. The specific
parameters set out in the MaMaDroid paper and then used in the TESSERACT paper, namely using
101 trees with a max depth of 64, are different from the default settings for a RandomForestClassifier
in sklearn [48]. For the sake of reproducibility, straightforwardness, bias minimisation, and in an
attempt to generalise our results, in this paper, we opt to pick to keep sklearn objects to their default
state as much as possible, as such we choose to use the RandomForestClassifier in its default settings
rather than specify the specific parameters used in the MaMaDroid paper.

This difference most likely has to do with some variance between the particular environment set up
for the TESSERACT paper this one. It could also be that the final MaMaDroid feature set used
to produce the results seen in the TESSERACT paper is different from the set used in this project.
This does not invalidate our results however as the plots are still of sufficiently good quality, and the
results in this report are compared against each other rather than the results from the TESSERACT
paper.

BLADE [4], seen in figure 3.3 has not been tested in this environment before, so there is nothing
outside this paper to compare it to. It is obvious when comparing the output for Drebin and Ma-
MaDroid that the Dataset is much smaller and more restricted, manifesting in a lot more volatility.
This becomes increasingly notable during the following experiments.

3.1.6 Metrics

Our results use two key metrics. These are F1 scores and AUT scores. F1 scores are defined as the
harmonic mean between precision and recall [60][61]. F1 is a very useful metric, employed heavily
by Pendlebury et al in their TESSERACT paper [7]. It allows us to account for both recall and
precision in one metric, which in turn allows us to account for the true positive, false positive, and
false-negative rate of our classifiers. As can be seen in our results, the true negative rate, that is
benign applications correctly identified, is almost perfect in most representations, and as such is not
important to consider.

F1 = 2
1

recall×
1

precision

= 2× precision×recall
precision+recall

Where precision and recall are defined as:

precision = tp
tp+fp

recall = tp
tp+fn

The other key metric used in our analysis is AUT. Area Under Time was coined by Pendlebury et al
[7] as a way to “evaluate performance of a malware classifier against time decay over N time units
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in realistic experimental settings.” It does this by calculating the area under the performance curve
over time and is defined as follows:

Figure 3.4: AUT definition from Pendlebury et al [7].

AUT is a “simple yet effective metric that captures the performance of a classifier with respect to
time decay, de-facto promoting a fair comparison across different approaches.” [7]
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Chapter 4

Experiments

Note about graph formats In this chapter, we display our concept drift results in graphs that
appear differently from ones seen previously including figures 3.1 and 3.2. The previous graphs are
generated from pre-existing visualisation code within the Tesseract framework, hence their similarity
to the ones found in the TESSERACT paper [7]. Instead of using this pre-existing implementation,
we thought it would be more straightforward to re-develop a visualisation method that best fits
the results of this project. Although the graphs look different, the results come from the same
place.

4.1 Drebin [3] feature comparison

The aim of the Drebin [3] feature comparison experiment is to answer RQ1 - Are metadata-based
features, such as permissions, more resilient to concept drift than those assembled from the bytecode?
This is done by directly comparing features in the context of concept drift.

4.1.1 Method

In figure 4.1 and 4.2, we split the features into two distinct groups, features derived from the manifest
(application metadata), and features derived from the bytecode itself. It is also notable that the
number of elements for each feature class set is not consistent. Network addresses for example have
over five times the number of features as many other feature sets considered. This will skew the
results but it was left in intentionally, as the number of elements available is an important factor to
consider. It may be for example that although manifest derived features could be more resilient to
concept drift, it may be that this simply is not relevant if their inclusion does not provide enough
value to the classifier outside the context of concept drift.

Figure 4.1: Drebin [3] manifest feature sets and associated dataset information
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Figure 4.2: Drebin [3] bytecode feature sets and associated dataset information

In order to effectively compare each element, it was decided that running each feature class through
the TESSERACT test environment would not produce useful results as the feature sets would be
too small and variable in size. Instead, this experiment does the opposite, removing one feature at a
time from the Drebin [3] dataset and comparing the effect on the rest of the dataset. This approach
means that when analysing the results the worse score indicates the feature in question has a higher
degree of importance in the context of concept drift. We can iterate through all 7 feature classes
within the Drebin [3] dataset, removing one feature at a time, and then run the remaining dataset
through the TESSERACT testing environment with default parameters. We can then draw our
conclusions by comparing each feature individually and as part of our two subsets.

4.1.2 Experiment

For this experiment, we iteratively remove each of the seven feature sets within the Drebin dataset.
In the X (feature) set, of the Drebin dataset, each specific feature is prepended with the feature
name. Some examples are included in figure 4.3. This allows us to search through the X set and
remove each element with the relevant feature name. The code to do so is shown in figure 4.4.

Example features:

"app_permissions::name='Android_permission_WRITE_MEDIA_STORAGE'

"urls::http:\/\/vpclub_octech_com_cn\/download_app_html"

"activities::_activity_QueryCheckGoodsActivity"

Figure 4.3: Drebin X feature format examples
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Figure 4.4: Code to remove feature class from Drebin dataset

This manipulated dataset is then run through the TESSERACT testing environment with default
parameters.

4.1.3 Results

Figure 4.5 gives demonstrates the effect of concept drift over the 24 month testing period. It is
notable that the variance between each feature set is not particularly large with the exception of
urls, which is notably the worst performer. As seen in figure 4.2, the urls feature set has by far the
largest number of items, which most likely explains it as an outlier. Tables 4.6 and 4.7 give AUT
scores for manifest and bytecode feature sets respectively. Our results do not convincingly prove
that metadata features are significantly more or less resilient to concept drift, but there are some
interesting takeaways. Running the full Drebin feature set gives us an AUT score of 0.583. This
means that some of the features, specifically activities and interesting calls make the Drebin dataset
less resilient to concept drift than it would be without them. It is likely that these two feature sets
have significant variance over time and therefore act to decrease the quality of the classifier over
time. The set actvities represents a core part of the metadata set and is shown to be the largest
detriment to concept drift resilience.

Feature sets intents and api permissions barely affect the AUT figure at all however most likely for
different reasons. api permissions very closely mirrors the full dataset results in figure 4.5, which
implies it is the least useful feature in the set and is generally ignored by the classifier. intents
however does differ from the full dataset line, but seems to average out to the same AUT score as it
under-performs the full dataset in the later months of the testing period. This would imply that the
intents feature set skews from being more important to the classifier in the earlier testing months
and then less important in the later months, averaging out to the same AUT score.

The average AUT score for the bytecode feature sets, seen in figure 4.7, is affected heavily by urls,
which gives by far the lowest score and can is consistently the worst performer in figure 4.5. This
demonstrates that urls is by far the most significant feature when it comes to concept drift. This
weighting is most likely down to the feature set size, which is roughly five times larger than many
of the other sets. Discounting this feature set gives an average for the bytecode gives an average of
0.583, which would make the manifest feature set slightly more concept drift resilient.
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The lowest AUT score not including urls is app permissions, and is demonstrated to give consistently
lower scores in figure 4.5. This however does not suggest that app permissions provides more re-
silience to concept drift than other methods, as we do not see the gap between app permissions and
the full dataset widen over time. Our data suggests that app permissions is simply a consistently
important metric in terms of accuracy and precision of the classifier. The only feature set here that
is seen to provide resilience to concept drift is urls, as it is the only one that is seen to decline at a
greater rate than the full dataset.

To conclude this section, this evidence does not support the claim that metadata-based features
provide greater concept drift resilience than features from the bytecode, but instead suggests that
many features have little effect on concept drift at all. From this data, we can suggest that the
greatest indicator of concept-drift resilience is simply the size of the feature set. However, it is
important to note that this dataset is limited, and further analysis of other feature sets may reveal
new trends.

Figure 4.5: Time-aware plot of Drebin [3] features. (mw = solid line, gw = dotted line)

Figure 4.6: Drebin [3] manifest feature set AUT results
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Figure 4.7: Drebin [3] bytecode feature set AUT results

4.2 Classification

The classification comparison experiment aims to answer RQ2 -What is the effect of machine learning
classification approach on concept drift in the context of different program analysis techniques? This
is achieved by varying the classifier used and comparing the results.

4.2.1 Method

The methodology behind this experiment is straightforward. To eliminate other variables the method
of feature representation is fixed to our default DictVectorizer [30] and varying the classification
approach. This experiment was then carried out on all three of our feature sets to give enough
data to draw useful conclusions. This project is particularly interested in classifiers that appear
repeatedly in the literature. An overview of the classifiers we use in this experiment is given in
figure 4.8.
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Figure 4.8: An overview of classifier methods used in this experiment
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4.2.2 Experiment

To carry out this experiment. We build a test framework that iteratively runs our TESSERACT
testing environment with each of the classifiers mentioned in table 4.8. We use our default vectorizer,
the DictVectorizer [30], to represent the data. We then save the results and the time taken to run
the experiment, allowing us to build graphs and tables later on. This code can be seen in figure
4.9.

Figure 4.9: An overview of classifier methods used in this experiment

4.2.3 Results

Figure 4.10 gives the F1 results for our three classifiers. AUT results are given in table 4.11. Training
times, another useful metric to consider, is given in table 4.12. Although the graphs are busy, we are
able to draw some useful conclusions. Most notably our BLADE results are incredibly variable. This
is down to the much smaller dataset for BLADE as compared to Drebin and MaMaDroid.

For Drebin, we find that none of the various methods we test can overwhelmingly outperform the
default LinearSVC. The SGDClassifier does have the highest AUT score, however, we find the line
drawn in figure 4.10 to be much more variable in the later months. It is difficult to say where
this variance comes from, but regardless it is consistently higher than LinearSVC. This is also very
surprising given the significantly shorter training time for the SGDClassifier over LinearSVC. This
makes this approach a “win-win”, especially in environments where computational power is con-
strained. In general, for Drebin we see a trend where a few classifiers, SGDClassifier, LinearSVC,
and DecisionTreeClassifier, can outperform the others at the beginning of the testing period but
are not able to hold onto this advantage, and even performed worse than other methods (see Lin-
earSVC) in the later periods. This result is particularly interesting as it demonstrates that the
classifier of choice will vary depending on the length of time a classification approach is required to
withstand concept drift. If someone is building a model to only last about a year, one of the three
aforementioned classifiers would make the best choices, but there may be instances where picking
a classifier with less variation is more desirable. The three variations of the KNeighborsClassifier
give particularly uniform results, with less variation throughout the testing period. In terms of
time, for Drebin, most of the classifiers are within 200 to 300 seconds with DecisionTreeClassifier
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and RandomForestClassifier taking significantly longer, and SDGClassifier taking significantly less
time (as previously mentioned). For Drebin, this makes the SGDClassfier the obvious best choice
in resource-constrained environments.

MaMaDroid’s results consistently under-performed in comparison to Drebin. This is not particularly
surprising, as MaMaDroid was also shown to under-perform Drebin in the TESSERACT paper. Al-
though there was variance in AUT between the classifiers for MaMaDroid, the general trend observed
in figure 4.10b is similar for all classifiers. Put another way, most classifiers tested in this experiment
decay at a similar rate. Some notable exceptions to this rule are the SGDClassifier, which produces
extremely variable results and generally decays very rapidly, and the RandomForestClassifier, which
towards the end of the testing period decays quite rapidly. Surprisingly, the RandomForestClassifier
performed as badly as is shown in our experiment considering it is the classifier of choice in the
MaMaDroid paper. This suggests that the best classifier tested statically on a dataset may not
necessarily line up with the best classifier at combating concept drift. In this example, it is the
KNeighborsClassifier with five neighbours that produces the best AUT score overall. It is also no-
table that the SGDClassifier, which was the best out of the classifiers for the Drebin feature set, was
the worst performer in this case. From Drebin and MaMaDroid there is no obvious best classifier to
choose, which presents an interesting result in itself.

Finally, for BLADE, we see a graph in figure 4.10c that is incredibly inconsistent. This is almost
certainly down to the significantly reduced dataset size for BLADE as compared with Drebin and
MaMaDroid. This result can immediately be applied to RQ4, suggesting that a decreased dataset
size will lead to much more wild and unpredictable results. This result is something that we will see
reiterated in the next two experiments. Due to this generally wild output, it is difficult to concretely
draw conclusions from the data presented. Notably, BLADE gives the largest variation in result,
with the three KNeighborsClassifier variations being a good microcosm of this effect. We see the
single neighbour KNeighborsClassifier perform by far the best out of any of the classifiers, whereas
the five neighbours classifier performs poorly and the ten neighbours classifier is by far the worst,
with the worst plot seen so far. The most significant takeaway from our BLADE results is we see a
different classifier from Drebin and MaMaDroid, KNeighborsClassifier with one neighbour, perform
the best. Choosing a classifier for a particular feature set must take into account how that particular
feature set will behave both statically and under the effect of concept drift. Finally, it is notable for
BLADE that we see the F1 scores for goodware, shown in the dotted lines, not be near-perfect for
the first time. This result acts again as a good indicator that the dataset size is too small.

In both Drebin and BLADE we see the KNeighborsClassifier performs best with only one neighbour.
We know that using two many neighbours can create errors [53], and having that become apparent
so quickly could indicate that our datasets are not best suited to this form of classification. It
may be that the delineation between our two classes, benign and malware, is not sufficient enough
for a nearest neighbour approach to work effectively, thus limiting the effectiveness of multiple
neighbours.

A particularly surprising result for all three feature sets is RandomForestClassifier [48], Which
took by far the longest to train in Drebin and Blade and the second-longest in MaMaDroid. The
classifier gave particularly poor results. In all three cases, it even gave worse results than the
DecisionTreeClassifier. This was not expected. The RandomForestClassifier is effectively a set of
DecisionTreeClassifiers, so we would expect the RandomForestClassifier to generally outperform the
DecisionTreeclassifier. It may be that our particular setup resulted in overfitting when using the
RandomForestClassifier on the initial training set, leading to particularly poor results. It may be
that rerunning the results on a smaller set of DecisionTrees in our forest would produce significantly

29



better results.

This set of results draws out some key conclusions. The best classifier, both in terms of maximising
the quality of the results and minimising concept drift, varies depending on implementation. Drebin
demonstrated some classifiers on some feature sets can be biased towards earlier testing periods
before potentially declining more significantly in later periods. This demonstrates that the period
a classification approach is required to be resilient to concept drift could potentially impact the
best classifier for a particular feature set. Other feature sets, such as MaMaDroid, produce less
variation, and the best approach is much more obvious. BLADE demonstrates the effect of having
a particularly small dataset, with a much greater variation in results seen.
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(a) Drebin (b) MaMaDroid

(c) BLADE

Figure 4.10: F1 results for experiment 2. (mw = solid line, gw = dotted line)
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Figure 4.11: Experiment 2 AUT results
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Figure 4.12: Experiment 2 AUT results

4.3 Feature representation

The aim of the feature representation experiment is to answer RQ3 - Q3 - What is the effect of
feature representation on concept drift in the context of different program analysis techniques? We
intend to analyse a variety of vectorization methods and compare their effectiveness, as well as other
benefits and drawbacks, on our three classification datasets.

4.3.1 Method

We chose a variety of approaches to feature vectorization, detailed in the table in figure 4.13. The
aim was to choose a variety of techniques that are well known and used, accessible, and provide
interesting trade-offs to analyse.
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Figure 4.13: Feature representation descriptions

Like Experiment 2, seen in section 4.2, the methodology is straightforward. By fixing the method
of classification to our default, the LinearSVC [45], we can vary our method of vectorization and
compare the results in order to get an understanding of how the method of representation affects
our classifiers in the context of concept drift.

4.3.2 Experiment

Each of the three feature sets are run iteratively within the TESSERACT testing environment using
each of the four vectorizers listed in figure 4.13. The implementation is similar to experiment 2, as
detailed in figure 4.9, except we vary the vectorizer and keep the classifier constant.

4.3.3 Results

Figure 4.14 gives the F1 results of the time-aware analysis for Drebin, MaMaDroid, and BLADE
for each of the four vectorizers. Table 4.15 gives the AUT scores and table 4.19 gives time taken
for each experiment. It is notable that in figure 4.14c The DictVectorizer line is hidden because it
perfectly mirrors the FeatureHasher line. In all three results, we see that the TfidfVectorizer is the
worst performer. This can seem reasonable considering the vectorization method is not particularly
designed for use in this kind of machine learning task and is generally more useful when using
working with text documents, however, the extreme difference between the TfidfVectorizer and the
other three approaches could potentially suggest some methodological error.

Of the remaining three we found that both FeatureHasher and DictVectorizer generally give very
consistent or even identical outcomes, with the two lines in all three graphs overlapping almost
perfectly and AUT scores almost identical. Although not something we reviewed in our experiment,
documentation [46] suggests that FeatureHasher is a lower memory alternative to DictVectorizer,
potentially making it a better choice for training in resource-constrained environments given that
the quality of the classification is almost identical between the two.

CountVectorizer was able to outperform the DictVectorizer in both BLADE and MaMaDroid datasets,
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but not Drebin. This may be to do with the type of dataset BLADE and MaMaDroid are, as
compared with Drebin. The BLADE dataset in particular is made up of a defined set of tokens,
potentially explaining why a vectorization method that counts occurrences of tokens would be par-
ticularly effective as there are only a set number of constants that can ever appear. Drebin is made
up of a much larger number of potential tokens, so the counts made by the vectorizer will generally
be lower and potentially less useful.

The BLADE dataset has the largest amount of variability, something already seen in the previous
experiment, as can be seen in both the AUT scores and in figure 4.14c. This is most likely down
again to a reduced dataset size. For Drebin and MaMaDroid, there is not a huge amount of variation
in the lines shown in figures 4.14a and 4.14b. This would suggest that our choice of classifier does
not have a particularly large effect on concept drift over time. Each vectorizer creates a decline in
quality that is very similar. This was a rather surprising result, as we were expecting to see greater
variability in results with the idea that the way in which data was represented would make some
impact on time decay by changing the way the classifier fit the vectorized feature sets. In reality what
this experiment has proved is that vectorization does not play a part in time decay, but instead can
be optimised to maximise output F1 scores. As noted previously, the inconsistent goodware (dotted)
lines in figure 4.14c are due to the particularly small dataset BLADE provides.

In all three datasets, the CountVectorizer increases the training time, as seen in figure 4.16, consid-
erably. FeatureHasher in both Drebin and MaMaDroid is slower than DictVectorizer, but this result
is reversed in BLADE, although in general, the training times are similar. TfidfVectorizer trains
incredibly quickly compared to the others, again suggesting this method’s lack of suitability for the
task. Although variable, this suggests that for a resource-constrained environment, the DictVector-
izer may be ideal for both Drebin and MaMaDroid, giving reasonable F1 scores and concept drift
resilience while training much faster. Given BLADE’s reduced dataset size is it difficult to draw any
conclusions from these time results.

To conclude this section, with the exception of BLADE, the four tested classifiers give reasonably
consistent output with the exception of the TfidfVectorizer. The TfidfVectorizer may simply be
unsuited to this kind of classification task with the datasets we provide. Further review may be
required to rule out any kind of methodological error, but the results are not extreme enough for
Drebin and MaMaDroid to indicate something disastrously wrong. The choice of vectorizer does
have some impact on the effect of concept drift but from this data, it is difficult to build any clear
patterns of behaviour. These results would suggest that a representation approach could be picked
in many cases by just considering resultant F1 scores.
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(a) Drebin (b) MaMaDroid

(c) BLADE

Figure 4.14: F1 results for experiment 3, using LinearSVC as the classifier. (mw = solid line, gw =
dotted line)
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Figure 4.15: AUT results for experiment 3

Figure 4.16: Train times for experiment 3

4.4 Dataset size

This is somewhat of a meta experiment, analysing how best to analyse concept drift. As mentioned in
section 2.4, one recurring issue we had during this project was working with projects with datasets of
insufficient size or quality. Effectively analysing concept drift requires a large number of timestamped
samples spread over a sufficient period of time to produce useful results. Our datasets for Drebin
[3] and MaMaDroid [4] are very large, with 129728 features in each set, whereas our BLADE [5] set
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was only 8948 elements and our DroidAPIMiner [19] set, that was discarded from our experiments
for being too small, had 1517 elements. All this leads to the question of what the limits are for
acceptable dataset size when testing time decay. The scope of this experiment is limited to just the
size of the set, with no focus on the way dates are spread out within each dataset. We are making
a reasonable assumption that our Drebin and MaMaDroid datasets are of sufficiently high quality
that we can solely focus on the size of the set. Future experiments could review how the spread of
dates within the dataset affects performance.

4.4.1 Method

In order to focus on just dataset size, it was important to keep the ratios of malware to goodware and
the numbers of APKs in each month period consistent. As such, we must perform pre-processing
on our datasets to eliminate elements consistently. We chose to take percentage slices of the dataset
starting from 5% and working up to 100%. This reduces both the size of the training and testing set
uniformly. We can then run the remaining dataset in our TESSERACT testing environment with
default parameters to compare our results.

4.4.2 Experiment

Pre-processing was implemented using python dictionaries to split the dataset up by malware/goodware,
and then by month. So we would have a separate list of APK feature sets for each combination of
month and good/malware. E.g. 2013/06-goodware. We can then iterate through each of these lists
and append the correct percentage of items back into the main list of APK feature sets. To find
the correct number of items we multiply the length of each list by the percentage (x ) and then take
the first x items from each list. The code used to achieve this is available in Appendix A, figure
A.1. Using these partial datasets, we can iteratively run our TESSSERACT testing environment in
a similar way to experiments 2 and 3, altering the dataset used in each iteration.

4.4.3 Results

Figures 4.17a, 4.17b, and 4.17c give the results of time-aware analysis of Drebin, MaMaDroid, and
BLADE respectively at dataset percentage levels ranging from 100% down to 5%. Figure 4.18 gives
the AUT results and figure 4.19 gives the number of APKs represented in each dataset split. What
is notable from these graphs, in particular figures 4.17a and 4.17b is that we see less of an obvious
decline in the quality of the classifier and more of an increase in variance. The results we see at the
lower percentage levels, for instance at 30 & 50 percent, we see larger deviations from the results
from the full dataset. This effect only becomes more dramatic at the lower percentages. Besides
this, the trend is generally still continued and although we see a general decline in AUT score, it
does not collapse entirely. By restricting the dataset uniformly, it is understandable why we see this
increase in variance. Smaller test set sizes, coupled with a smaller train set size, will produce testing
periods that by chance score very high or very low depending on what samples happen to be left
in each testing set for each testing period. The smaller the set in each testing period, the greater
impact random chance will have on the final F1 score. These results do not just reflect a failure on
the part of the classifier to train on a reduced dataset size, but also a failure on the test sets to give
useful results in each testing period. It is only in BLADE where the dataset gets extremely small
do we a total collapse in classifier quality.

As BLADE starts with a much smaller dataset size, it gives us an insight into the effect of decreasing
the dataset size to an even greater extent. Below a few thousand elements we finally see time decay
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take a much more extreme effect. In particular, the 30% lines show the most significant drop off in
score of any plot seen so far. Of course, once we get much lower we see the complete collapse of F1
throughout the entire time period.

These results give us some clear conclusions. Dataset size, disregarding the distribution of malware
and benign applications in the dataset, is correlated with increased volatility in results, even if
general trends are still somewhat followed. It is difficult to give a concrete figure of a “cut-off” point
for dataset size, as tolerance to this variability will change from implementation to implementation.
In general, both Drebin and MaMaDroid saw a significant spike in variability at 10% of the dataset,
so around 13000 items. We could therefore suggest that future implementations should aim to have
at least double that number to have results with somewhat reasonable variance.
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(a) Drebin (b) MaMaDroid

(c) BLADE

Figure 4.17: F1 results for experiment 4
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Figure 4.18: AUT results for experiment 4
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Figure 4.19: Number of APKs in each dataset

42



Chapter 5

Conclusion

5.1 Summary of Achievements

This project aimed to explore the Android malware classification pipeline in the context of concept
drift. By exploring different program analysis techniques, representations, and dataset sizes we were
able to produce novel insights into how elements of the classification pipeline and concept drift are
related. In experiment 1, we compared and contrasted elements of the Drebin [3] dataset to consider
if metadata-based features were more resilient to concept drift than ones derived from the bytecode.
We discovered that these two sets were not dissimilar enough to make such a claim, and instead
discovered that the size of the feature within the dataset seems to have a much more significant
effect on concept drift resilience.

In experiment 2, we compared and contrasted various machine learning based classifiers and dis-
covered a significant variance in the results. We found that the effect of the classification method
on concept drift is variable depending on the feature set used. On some feature sets, for instance,
for Drebin, we see classifiers that perform well in the earlier testing periods before declining more
rapidly later on and other classifiers that remain much more consistent throughout. We also found
that there is no clear best classifier for any of the three feature sets tested. Our classification meth-
ods were also very variable in time to train, which could impact the decision of which classifier to
choose in very resource-constrained environments. In contrast to expectation, we found that the
RandomForestClassifier was one of the worst methods of classification. We had previously expected
the RandomForestClassifier to produce the best results given its complexity compared to other
methods.

In experiment 3, we observe that there is some variation in results returned by our four tested vector-
ization approaches, however, there is generally not a huge disparity between the three approaches,
especially in the context of concept drift. The vectorization approach chosen for any particular
pipeline will most likely just come down to maximising performance rather than being concerned
about the implications of concept drift.

Finally, experiment 4 did produce some interesting insights, drawing a correlation between dataset
size and variance of classifier quality over time, with larger dataset sizes producing more stable
results. What constitutes a dataset that is considered too small will depend on the particular use
case.
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The kind of experimentation carried out in this report can act as a bedrock for future work. We have
succeeded in giving insight into the implications of program analysis abstractions to concept drift
by varying parts of the classification pipeline in experiments that produce findings that improve the
base of knowledge available in the malware classification research space.

5.2 Critical Analysis and Future Work

The experiments carried out in this paper are by no means definitive, and there is plenty of room
for further exploration. Different combinations of representation, classification, dataset size, and
feature set may produce different and interesting results. In particular, it would be interesting to
rerun some of these experiments with MaMaDroid using a well-tuned RandomForestClassifier. Such
an approach would require a sufficiently powerful machine, but it would be interesting to see if any
of the results for MaMaDroid seen in Experiment 3 or 4 are impacted. It would also be interesting to
expand upon the reduced dataset size experiment, looking at how manipulating the ratios between
goodware and malware, as well as restricting just the size of the training set rather than the whole
dataset affects the results. One of the key limitations of this project was the lack of datasets of
significantly high quality and size to work with, and future work with access to such datasets may
be able to yield different results. Initially, this project was going to look deeper into the effect of
how different features abstracted from source APKs can affect concept drift, but this was difficult
due to the aforementioned issues with dataset availability. Future work with the time and resources
to rebuild unavailable datasets from cutting edge classification approaches could aim to fill this
gap.

Of particular interest at the beginning of this project was a comparison between feature sets with
specifically selected features, such as Drebin, versus an approach that takes a less focused approach
such as BLADE where all occurrences of a more general feature (such as opcodes or API-flow
patterns) are taken as part of the feature set. The comparison between “expert-selected” and
“dumb” feature sets was not something that could be fully explored in this paper as the data was
simply not available. A larger scale project able to re-create some classifiers from each of these two
categories and build sufficiently large feature sets could produce some interesting insights into the
effect of concept drift. Our hypothesis remains that “dumb” feature sets would be less resilient to
concept drift as they could be more prone to over-training by the classifier. A carefully selected set
of features that remain similar over time could produce results, that while may not produce the best
accuracy and precision scores, could be the most resilient to concept drift.

Other avenues of exploration could include reviewing classification over longer time periods than 12
or 24 months. Combining various approaches to the classification pipeline with known concept drift
mitigation strategies such as Trancend [18] could also yield novel results.
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Appendix A

Code snippets

Figure A.1: Code to split dataset in experiment 4
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Figure A.2: Implementation of TESSERACT testing environment
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